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Key Points: 22 

● A diagnostic analysis on a machine learning precipitation classification model is 23 

performed  24 

● Model uses a comprehensive set of predictors derived from GOES-16 satellite 25 

observations and numerical weather predictions (NWP). 26 

● Brightness temperature textures and inter-band differences are efficient predictors. 27 

● Environmental predictors such as CAPE, lapse rate, relative humidity, and 28 

precipitable water, bring complementary information  29 
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Abstract:  30 

Improvements in remote sensing capability and improvements in artificial intelligence have 31 

created significant opportunities to advance understanding of precipitation processes. While 32 

highly advanced Machine Learning (ML) techniques improve the accuracy of precipitation 33 

retrievals, how these observations contribute to our understanding of precipitation processes 34 

remains an underexplored research question. In a companion manuscript, a precipitation type 35 

prognostic ML model is developed by deriving  predictors from the Advanced Baseline Imager 36 

(ABI) sensor onboard Geostationary Observing Environmental Satellite (GOES)-16. In this 37 

study, these predictors are linked to different precipitation processes. It is observed that satellite 38 

observations are important in separating Rain and No-Rain areas. For stratiform precipitation 39 

types, predictors related to atmospheric moisture content, such as relative humidity and 40 

precipitable water, are the most important predictors, while for convective types, predictors 41 

such as 850-500hPa lapse-rate and Convective Available Potential Energy (CAPE) are more 42 

important. The diagnostic analysis confirms the benefit of  spatial textures derived from ABI 43 

observations to improve the classification accuracy. It is recommended to combine  the heritage 44 

water vapor channel T6.2 with the IR T11.2 channel for improved precipitation classification. 45 

Overall, this study provides guidance to atmospheric and remote sensing scientists on a large 46 

array of predictors that can be used from geostationary satellites and multispectral sensors for 47 

precipitation studies. 48 

 49 
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1. Introduction 52 

Mapping precipitation from space has been well recognized for over five decades. The high 53 

spatial and temporal resolutions and the improved spectral information from the new 54 

generation of Geostationary Earth Orbit (GEO) satellites provide opportunities to improve our 55 

understanding of clouds and precipitation processes, particularly the characterization of 56 

convective processes that are at the core of severe and extreme weather (National Academies 57 

of Sciences, Engineering, and Medicine 2018). This follows priorities identified in the 2017-58 

2027 decadal survey for Earth Sciences and Applications from Space (ESAS 2017) by the 59 

Earth science community. Identifying these processes also helps improve precipitation retrieval 60 

accuracy from GEO sensors (Grams et al., 2016; Thies et al., 2008).  61 

Several studies attempted to identify precipitation processes from space with previous GEO 62 

sensors. Yet, significant challenges exist due to the indirectness in the information related to 63 

cloud top heights obtained from the Visible (VIS)/Infrared (IR) regions of the electromagnetic 64 

spectrum (Kidder and Vonder Haar; 1995). Some of the early studies used a single VIS channel 65 

with the hypothesis that clouds producing rain have higher optical thickness and appear 66 

brighter than non-raining clouds in VIS images (Follansbee, 1973; Kilonsky and Ramage, 67 

1976). More studies focused on using IR channels since they are available during both day and 68 

night. Rain-producing clouds are often associated with cold cloud tops in IR brightness 69 

temperature images (BT; Arkin, 1979). However some clouds do not substantiate this 70 

hypothesis, e.g. stratus clouds appear bright in VIS images but do not produce as much rain as 71 

convective systems, and high-level cirrus clouds appear cold in IR image but do not produce 72 

rain (Kidder and Vonder Haar, 1995). Bi-spectral techniques involving both VIS and IR 73 

channels were designed to identify different precipitation systems (Lovejoy and Austin, 1979; 74 

Tsonis and Isaac, 1985). To adapt bi-spectral techniques to day and night retrievals, the water 75 

vapor (WV) absorption channel is used in current algorithms (Upadhyaya et al., 2014; Tao et 76 

https://journals.ametsoc.org/view/journals/bams/100/2/bams-d-17-0218.1.xml?tab_body=fulltext-display#bib26
https://journals.ametsoc.org/view/journals/bams/100/2/bams-d-17-0218.1.xml?tab_body=fulltext-display#bib26
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al., 2018). For a summary of early techniques of satellite precipitation detection and 77 

quantification, readers are referred to Barret and Martin (1981). Over the last three decades, 78 

the quality, resolution, and information captured by GEO sensors have significantly improved; 79 

e.g. from two  channels with the VISSR (Visible-Infrared Spin Scan Radiometer) sensor 80 

onboard GOES-1 to sixteen channels with the ABI (Advanced Baseline Images) onboard the 81 

latest-generation GOES-R satellite. Satellite precipitation algorithms (SPA) have evolved 82 

accordingly, with improved ability to identify precipitation processes through the use of 83 

multiple spectral channels. Yet, current SPA falls short of using the full set of available GEO 84 

IR observations and likely underutilize the information content.    85 

A popular use of multiple spectral channels involves deriving spectral and textural 86 

predictors from one or a combination of channels (Note: a texture represents spatial 87 

characteristics that account for neighbourhood information). The most common approach for 88 

combining channels is to take the difference between brightness temperatures (further referred 89 

to as BTD). For example, Tjemkes et al. (1997) showed that the difference between the IR 90 

window channel (11.2 μm in ABI) and the water vapor (WV) absorption channel (6.2 μm in 91 

ABI) can be used to separate overshooting cloud tops and cirrus clouds. Radiative transfer 92 

simulations revealed that the difference between two infrared channels (e.g., 11.2 μm and 8.4 93 

μm) provides information about cloud phase (Baum and Platnick, 2006; Giannakos and Feidas, 94 

2013). This cloud phase detection can be further improved by comparing two difference indices 95 

(i.e., difference of BTDs: D-BTD). The most commonly used D-BTD index involves the 96 

difference between the 8.5 μm-11.2μm and 11.2μm-12.3μm BTD values (So and Shin, 2018). 97 

Single channel indices include textures as the representations of the visual characteristics of a 98 

surface (Mohanaiah et al., 2013). Texture indices derived from several individual channels are 99 

found to be useful at all stages of the precipitation retrieval (Ba and Gruber, 2001; Kuligowski, 100 

2016; Hong et al., 2004; Giannakos and Feidas, 2013; Tian et al., 1999). To complement the 101 
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cloud top information coming from GEO sensors, alternate sources of information can come 102 

from Numerical Weather Prediction (NWP) model data and topographic information (Grams 103 

et al., 2014; Min et al., 2018; Upadhyaya et al., 2016). More indices can be derived and 104 

analysed, such as combinations of BTDs and D-BTDs and textures from BTDs and D-BTDs.  105 

In a companion manuscript (Upadhyaya et al., 2021; hereafter referred to as Part I) of this 106 

study, a comprehensive set of indices from GOES-16 ABI observations were derived and 107 

matched with surface precipitation types from the Ground Validation Multi-Radar/Multi-108 

Sensor (GV-MRMS) system (Zhang et al., 2016; Kirstetter et al., 2018) across the 109 

conterminous United States (CONUS). A machine learning (ML) based Random Forest (RF) 110 

model is built to explore various new indices and prognose the identification of precipitation 111 

types. In this study (hereafter referred to as Part II), the focus is on peering into the developed 112 

ML model and its interpretation. Major identified research gaps and  motivating research 113 

questions are discussed as follows.   114 

1. While several categories of indices are already proposed in the literature, many more 115 

that can be derived have not been examined. The operational products, such as the Self-116 

Calibrating Multivariate Precipitation Retrieval (SCaMPR; Kuligowski et al. 2016), 117 

and Precipitation Information from Remotely Sensed Information using Artificial 118 

Neural Networks - Cloud Classification System (PERSIANN-CCS; Hong et al., 2004), 119 

do not make exhaustive use of these indices. For the first time to our knowledge, a 120 

framework is proposed to perform consistent and systematic analyses on satellite-based 121 

indices for precipitation detection and classification of types. In order to make 122 

recommendations for science and operational use, the first research question under 123 

investigation is: what is the impact of the different satellite predictors on 124 

classification accuracy?   125 
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2. It has been long recognized that the  indirectness in the information from IR sensors in 126 

detecting and retrieving precipitation can be complemented by environmental 127 

predictors from NWP models. For example, operational products, such as SCaMPR, 128 

use environmental predictors such as Relative Humidity (RH) to mitigate the 129 

overestimation (underestimation) of GEO retrieved rainfall in dry (wet) environments. 130 

In part I, additional environmental predictors, such as Convective Available Potential 131 

Energy (CAPE), vertical lapse rate of temperature, and wind shear are utilized. This 132 

study investigates the significance of environmental predictors with motivation to 133 

address the research question: What is the relative impact of satellite-based 134 

predictors compared to environmental predictors? 135 

3. The global operational satellite precipitation products, such as PERSIANN-CCS, and 136 

Integrated Multi-satellitE Retrievals for the Global Precipitation Mission (IMERG; 137 

Huffman et al., 2015), utilize only one channel  from GEO sensors. As GEO satellites 138 

uniquely provide the longest period of global precipitation observations (over more  139 

than four decades), there is a need to assess the accuracy they allow for reanalyses, 140 

along with highlighting the progress made possible with recent sensors. This motivates 141 

to investigate the research question: How do the multi-spectral channels from the 142 

new generation of GEO sensors compare to historical benchmarks that use only 143 

legacy channels? 144 

4.  With improvement in computational power and growth in artificial intelligence, big 145 

data from GEO sensor observations can feed the latest generation ML methods (Tao et 146 

al., 2018; Min et al., 2018; Meyer et al., 2016) to model their complex interactions. 147 

While highly advanced ML techniques improve the overall accuracy of precipitation 148 

retrievals, these data-driven models do not connect predictors with processes. How 149 

much each predictor contributes to our understanding of precipitation processes 150 
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remains an underexplored research question. The complex nature of ML algorithms, 151 

however,  makes it challenging to physically interpret these models and indices. 152 

Recently, several tools have been developed to peer into these models, thus making it 153 

possible  to address this major gap in understanding: Which predictors are 154 

contributing to different precipitation types?  155 

Section 2 of this paper describes the data sets used and how they were pre-processed prior 156 

to use by the RF model.  Section 3 outlines the RF model and the experiments that were 157 

conducted, and Section 4 describes the results of these experiments, followed by concluding 158 

remarks in Section 5. 159 

 160 

2. Data and Pre-processing  161 

2.1. GV-MRMS  162 

Data for the Global Precipitation Measurement (GPM) Ground Validation (GV-MRMS; 163 

Kirstetter et al., 2012, 2014, 2018) based on MRMS (Zhang et al., 2016) is used as a reference. 164 

The study period is over summer 2018 (June, July, August, and September) and the study area 165 

is the conterminous United States (CONUS) with latitude bounds [25°N 50°N] and longitude 166 

bounds [125°E 67°E]. The spatial and temporal resolutions of GV-MRMS are 0.01°× 0.01° 167 

and 30 min, respectively. The reference product is the surface precipitation type derived from 168 

MRMS. Precipitation types relate to different precipitation processes and drive the MRMS 169 

precipitation quantification. Identifying precipitation types is also key for quantification from 170 

the GOES ABI sensor. 171 

 The precipitation types as classified in GV-MRMS are 1) Warm Stratiform rain, 2) Cool 172 

Stratiform rain, 3) Convective rain, 4) Tropical Stratiform/Mix, 5) Tropical Convective/Mix, 173 

6) Hail, 7) Snow, and 8) No-Precipitation. This empirical classification is based on several 174 

radar and NWP based environmental variables with adaptable thresholding parameters (Zhang 175 
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et al., 2016). Part I of the study discussed the potential and limitations in re-creating the same 176 

classification from ABI observations, and the advantages of a probabilistic classification 177 

(provided by a Random Forest machine learning approach) over a deterministic classification.   178 

Note that radar estimates have their own uncertainties, such as beam blockage, non-179 

precipitation echoes, and bright bands (Zhang et al., 2016), which impacts precipitation 180 

classification. In order to use only reliable observations as reference, a Radar Quality Index 181 

(RQI) is used for quality control (QC) purposes, with a threshold of 98% for most precipitation 182 

types and a lower threshold of 90% for Hail due to lower sample sizes. Due to very limited 183 

sample size in summer, the Snow type is not considered in this analysis. For further details on 184 

RQI, the readers are referred to Zhang et al. (2011, 2016). Also note that only ~35% of total 185 

observations satisfy the RQI criteria across CONUS, out of which 72% are from Eastern 186 

CONUS and the remaining 28% are from Western CONUS (again highlighting the significance 187 

of GOES-16 observations over complex terrain). 188 

 189 

2.2. ABI observations and derived predictors 190 

This study uses the five parallax adjusted GOES-16, ABI channels (Channel 8: 6.2μm, 10: 191 

7.3μm, 11: 8.5μm, 14: 11.2 μm, and 15: 12.3 μm) used by SCaMPR (Kuligowski et al., 2016). 192 

The parallax adjustment is based on trigonometry.  Based on the known satellite location (in 3 193 

dimensions) and Earth's radius, the cloud-top height is estimated by using the ABI band 14 194 

temperature as a proxy for the cloud-top temperature (a reasonable assumption for precipitating 195 

clouds) and by comparing it to the spatially interpolated temperature-height profile from GFS 196 

model forecasts.  197 

Six categories of predictors are derived from these observations and are listed in Table 1. 198 

Category 1, BT, is brightness temperatures from the individual ABI channels. Category 2 199 

includes the differences between two channel BTs, called  BTDs. Category 3 corresponds to 200 
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the difference between BTDs, represented as D-BTDs. Category 4 consists of five types of 201 

Textures (Te), namely "mean", "variance", "homogeneity", "contrast", and "entropy", that are 202 

derived from the Grey Level Co-occurrence Matrix (GLCM; Haralick et al., 1973) for all 203 

predictors from Categories 1 - 3. Category 5 is the Satellite Zenith Angle (Ze). In total, 249 204 

predictors are derived from satellite observations. These categories are discussed in Section 1. 205 

More details are provided in Section 4, and interested readers are also referred to Part I.  206 

The spatial and temporal resolutions of ABI are, respectively, 2 km at nadir and 15 min for 207 

the full disk (reduced to 10 min after the study period). To match the datasets, GV-MRMS is 208 

aggregated to the ABI spatial resolution. Two additional QCs are applied to the data. First, a 209 

minimum percent coverage of precipitating pixels from GV-MRMS within one coarser ABI 210 

grid cell (Prain) is applied to mitigate the influence of partially precipitating grids on accuracy 211 

(following Upadhyaya et al., 2020). Only grids with Prain greater than 95% or less than 5% 212 

are used for analysis. Secondly, only grids with homogeneous precipitation types are targeted; 213 

i.e. grids with at least 98% of the same precipitation type are used for analysis for most types, 214 

except 90% for convective and Tropical Convective/Mix precipitation types, and 80% for Hail. 215 

The sample size of the data set after all the QC is given for each month in Table 2. Each monthly 216 

dataset is broken down into training (70%) and testing (30%) for representative samples from 217 

the entire summer season. The independence between the training and testing datasets with 218 

respect to storms being placed in both was checked, and its impact on the results was found to 219 

be negligible. It is also ensured that events in the training and testing datasets have good spatial 220 

and temporal representations. Since the training data is highly unbalanced across precipitation 221 

types, under sampling is applied on the most populated types (e.g. Warm Stratiform) to create 222 

a balanced dataset and optimize the RF model training. For evaluation, the testing dataset is 223 

used.  224 

 225 
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2.3. Numerical Weather Prediction (NWP) model based environmental predictors 226 

To complement the cloud top information from ABI observations and provide information 227 

about mid- and low-level environmental conditions, NWP-based predictors are used.  The next-228 

generation hourly updated assimilation and model forecast cycle Rapid Refresh (RAP), part of 229 

the NOAA/National Centers for Environmental Prediction (NCEP) operational suite since May 230 

2012, is used (Benjamin et al., 2016). In total 19 predictors adopted from Grams et al. (2014) 231 

are used (Table 3) along with the previously-described satellite-based predictors.  232 

 233 

3. Summary of Prognostic Modelling and Proposed Experiments for Diagnostic 234 

Analysis 235 

3.1. Summary Part I: Prognostic Model  236 

As mentioned in previous sections,  Part I of this article focuses on prognostic modelling; 237 

i.e., the design, training, and assessment  of a machine learning based model. Comprehensive 238 

sets of predictors are derived and tested, many of which are derived for this particular 239 

application for the first time in the literature. The main objective is to evaluate the potential for  240 

the new generation of GEO ABI satellite observations to discriminate precipitation processes 241 

or types,  and to quantify the accuracy that can be achieved for each precipitation type. The 242 

important question  is addressed: Can the model be applied to real case events? The overall 243 

results in the form of a normalized contingency matrix is shown in Table 4. The analysis 244 

showed that the ML model has an overall classification accuracy greater than 75%,  with 245 

particularly good ability at delineating Precipitation from No-Precipitation. It also displays  246 

good accuracy in terms of  detecting precipitation types, such as Cool Stratiform, Warm 247 

Stratiform, and Hail. Tropical types, Tropical Stratiform/Mix and Tropical Convective/Mix, 248 

and Convective type are more challenging.   249 



 

10 

RF is by design a probabilistic classifier. RF computes the probability of a sample 250 

belonging to each precipitation type before the dominant probability class is assigned in a 251 

deterministic way. Part I highlights the need to use probabilities to objectively handle 252 

precipitation types identified with various levels of certainty from a user perspective. In 253 

particular, an “uncertain” type can be defined using the predicted probabilities. RF models also 254 

compute feature/predictors importance. Overall, it is shown  that environmental predictors have 255 

higher importance than satellite predictors. Feature importance can be used to design more 256 

parsimonious models. The analysis indicates how the number of  predictors can be reduced 257 

from 260 to 68 without significantly compromising accuracy. The present study focuses on 258 

understanding the significance of different predictors for each precipitation type by analyzing 259 

the structure of the RF model. 260 

   261 

3.2. Experimental set-ups for diagnostic modelling  262 

An RF model was built and evaluated by using the scikit-learn framework (https://scikit-263 

learn.org/). The list of experiments carried out to diagnose the RF model and understand the 264 

impact of different predictors  is given in Table 5. The need for and background of these 265 

analyses is discussed in their respective results sections. Note that all these experiments are 266 

trained with 70% balanced data as given in Table 2 and statistics are computed using the 267 

remaining 30% of validation data. 268 

Analyses 1-3 are designed similarly to Part I but each with different sets of predictors. The 269 

first analysis runs experiments using various satellite predictors as listed in Table 1 to get a 270 

deeper understanding on the significance of BT, BTD, D-BTD, Te, and Ze. For the second 271 

analysis, three experiments involve satellite predictors only, environmental predictors only, 272 

and satellite and environmental predictors altogether. For the third analysis, RF experiments 273 

with predictors based on only one IR channel (T11.2) and two channels (T11.2, T6.2) that 274 
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simulate historical sensors are compared with estimation using three channels (T11.2, T6.2, 275 

T12.3) and all five channels.  276 

Analysis 4 focuses on estimating important predictors for each precipitation type by 277 

extracting the contribution of all predictors and by ranking them according to their contribution 278 

to estimated probability. The Treeinterpreter python library (Andosa, 2015) is used to interpret 279 

the RF models. For a given sample and precipitation type, it extracts the estimation path of the 280 

forest from root to the leaf and the contribution of each predictor.  281 

As an example, a hypothetical sample output with few predictors and decisions is shown 282 

in Fig. 1. Assuming that the hypothetical sample follows the red line path, then the predicted 283 

probability for the sample to belong to the tree class is shown in the equation in Fig. 1, where 284 

Mean is the value at each root node and other variables are contributions from subsequent tree 285 

nodes. The predicted probability of a sample belonging to the tree class is 0.83, with the highest 286 

contribution coming from predictor “BT1 – BT2”. Similar estimates and contributions can be 287 

retrieved for each estimated class (precipitation types), which adds up the probability of a 288 

sample to belong to each type to a total of 1. Inherently, RF models build these probability 289 

estimation forests for each precipitation type, and the sample is assigned deterministically to 290 

the dominant class. In the present study, Treeinterpreter is run separately for each precipitation 291 

type with randomly selected sub-samples from the validation dataset that are correctly 292 

classified. Since it is impractical to show the contribution from each of the 260 predictors, the 293 

highest contributing predictors in a particular precipitation type are identified by ranking their 294 

average contributions  to the tested sample. Then, the distribution of contribution of these high 295 

contributing predictors from all samples is analysed.  296 

Quantifying and analysing the significant predictors for each precipitation type (Analysis 297 

4 in Table 5) allows an in-depth assessment of falsely classified precipitation types.  298 

 299 
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4. Results and Discussions  300 

4.1. Significance of different categories of satellite predictors 301 

RF models are developed with individual categories of satellite predictors (Table 1) to 302 

understand which categories of predictors are significant and for what precipitation types. 303 

Figure 2 shows accuracy for each precipitation type and for each of the categories of satellite 304 

predictors.  305 

It can be observed that all categories of satellite predictors are valuable for the identification 306 

of different precipitation types. Overall, models built on texture based predictors (Te) show 307 

higher accuracy than other models built on other individual categories, especially for the Warm 308 

Stratiform type. For the Hail and No-Precipitation types, all models show similar 309 

performances, except for the model built with the Zenith Angle predictor. The accuracy of the 310 

Zenith Angle model ranges from 20-25%, which is generally lower than for the other 311 

precipitation type models. Yet, for the Tropical-Convective Mix and the Cool Stratiform types, 312 

the Zenith Angle only model shows similar skill to the models that use the satellite and / or 313 

environmental predictors.  This should not be entirely surprising given that the climatology of 314 

occurrence of some of these precipitation types has a strong spatial dependence; for instance, 315 

the Cool Stratiform type is generally observed in the northern and western portions of the ABI 316 

viewing area whereas Tropical-Convective Mix is much more prevalent closer to the GOES-317 

16 subpoint. However, it should also be noted that spatial climatology of precipitation classes 318 

are a part of the MRMS classification system and thus may also be contributing to the strength 319 

of the relationship between GOES-16 zenith angle and precipitation class. BTD and D-BTD 320 

based models generally show very similar accuracy with marginally higher scores for D-BTD. 321 

Since the best results are consistently achieved using models combining all satellite predictors, 322 

it appears that the precipitation type classification benefits somewhat from their inclusion. 323 
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Except for No-Precipitation, the improvement is in the range of 5-10% for all other 324 

precipitating types.  325 

 326 

4.2. Comparative performance analysis of satellite based predictors and environmental 327 

predictors 328 

In Part I of the manuscript, it is observed that environmental predictors display an 329 

overall higher feature importance than satellite predictors. This section aims at comparing the 330 

significance of satellite based predictors to environmental predictors for each precipitation 331 

type. It can be observed from Fig. 3 that models based on satellite predictors show higher 332 

accuracy for convective types (Hail, Convective and Tropical Convective/Mix) and No-333 

Precipitation, while  classification based on environmental predictors display higher 334 

performances for stratiform types (Cool Stratiform, Warm Stratiform, and Tropical 335 

Stratiform/Mix). It confirms results from previous studies that convective precipitation can be 336 

detected well by GEO sensors, whereas the identification of shallow clouds can be improved 337 

with numerical model fields (e.g. Ebert et al., 2007). As in the previous section, models 338 

combining satellite and environmental predictors improve the accuracy, especially for 339 

convective types. It can possibly be inferred from Fig. 3 that for the stratiform classes, the 340 

satellite data are not contributing any significant useful information beyond that contained in 341 

the environmental variables from the numerical weather model.  However, it must also be kept 342 

in mind that the additional information content in the satellite data that improves the skill for 343 

the convective classes can indirectly improve the skill for the stratiform classes by e.g., 344 

preventing a convective pixel from being incorrectly classified as stratiform. 345 

 346 

4.3. Benchmarking the precipitation typology from historical GEO sensors to new 347 

generation GEO sensors  348 
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Since the launch of geostationary satellites in the early 1970s until now, the IR channel 349 

at ~11 μm has been the legacy channel with almost five decades of routine global data. These 350 

channel observations are still used in almost all operational GEO precipitation retrieval 351 

algorithms and other merged satellite precipitation products (e.g., IMERG: Huffman et al., 352 

2015;  Tropical Amount of Precipitation with an Estimate of ERrors / TAPEER: Roca et al., 353 

2010; PERSIANN: Sorooshian et al., 2000). During the late 1970s, the WV absorption channel 354 

at 6.2 μm from geostationary orbit was introduced in the Meteosat-1 Meteosat Visible and 355 

Infrared Imager, making it also a legacy channel with 3-4 decades of observations. Although 356 

its importance has been established in many precipitation retrieval studies (Ba and Gruber, 357 

2001; Upadhyaya and Ramsankaran, 2014, 2016; Kuligowski et al., 2016), this channel is still 358 

not very commonly used in operational merged products. A third channel which showed 359 

significance in precipitation retrievals, in particular to separate water and ice phase clouds, is 360 

the channel at 12.3 μm (So and Shin, 2018; Kuligowski et al., 2016; Kühnlein et al., 2014;  361 

Thies et al., 2008; Behrangi et al., 2009). Due to its sensitivity to water vapor content in the 362 

atmosphere, this channel is considered  a “dirty” IR channel. In this section, a benchmark is set 363 

up on the accuracy that can be achieved with the historical legacy channels and with the 364 

additional new-generation channels. It sets the stage to revisit climate data records for 365 

improved precipitation products using observations from more than one channel. Figure 4 366 

shows  the classification accuracy obtained with each precipitation type by using only the 11.2 367 

μm channel derived predictors, the two legacy channels 11.2 μm and 6.2 μm, the three channels 368 

11.2 μm, 6.2 μm and 12.3 μm, and all five channels. Each of these models include  all possible 369 

BTDs, D-BTDs, and textures from the channels they contain.  370 

 A consistent improvement is observed in the classification performance by introducing 371 

additional channels. Specifically, a significant jump in accuracy is observed in most classes by 372 

adding the WV channel T6.2 to the  IR T11.2, with about a 5% gain for the No-Precipitation 373 
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and Convective types, and more than 10% with all other precipitation types. The addition of 374 

the  IR T12.3 observations results in more modest  improvements in the range of 2-4% for most 375 

types. The highest accuracy is obtained with five channels, indicating the need to test additional 376 

channels from the ABI     . Finally, environmental predictors are also significantly important, 377 

with around 10% improvement in stratiform precipitation types (Warm Stratiform, Tropical 378 

Stratiform/Mix, and Cool Stratiform). It suggests that current operational products could 379 

incorporate more environmental predictors in addition to the mean-layer Relative Humidity 380 

used currently in SCaMPR (the operational NOAA algorithm for ABI: Kuligowski et al., 381 

2016).  382 

 383 

4.4. Important predictors for each precipitation type 384 

 This section identifies the most important predictors contributing to each precipitation 385 

type. This question addresses a significant gap of knowledge in the use of GEO sensors for 386 

precipitation characterization. The Treeinterpreter is implemented as explained in Section 3.2.  387 

 Figure 5a shows the box-plot distributions of contributions to the identification of the 388 

No-Precipitation type, computed with Treeinterpreter from the validation samples. The   fifteen 389 

highest contributing predictors are displayed on the horizontal axis, with their contributions 390 

normalized to ease the inter-comparison between different predictors. For example, the highest 391 

contributing predictor to the identification of the No-Precipitation type is the D-BTD satellite 392 

predictor (T7.3 – T11.2) - (T8.5 – T12.3), with a contribution of 5-6% to the overall predicted 393 

probability of correctly classified No-Precipitation samples. This cumulative contribution line 394 

shows that the fifteen predictors together are responsible for more than 50% of the total 395 

contribution. Figure 5b shows an example of distributions for the same D-BTD predictor across 396 

the precipitation types, which illustrates the predictor ability in separating precipitation types. 397 

The distributions of predictors values from the D-BTD predictor are significantly different 398 
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across types, with large negative values for the No-Precipitation type,  higher values for 399 

stratiform types (Cool Stratiform, Warm Stratiform, and Tropical/Stratiform Mix), and 400 

contributions close to zero for convective types (Tropical Convective/Mix, Convective, and 401 

Hail). 402 

 Figure 6 shows the contribution distributions of the highest contributing predictors for 403 

all other precipitation types. As noted in Part 1, environmental predictors provide the highest 404 

contributions for most precipitation types. The  highest contributing satellite  predictors are 405 

identified in Figure S1. Figures 7 and 8 display the distributions of predictors to different 406 

precipitation types from the most important environmental and satellite predictors, 407 

respectively.  408 

 409 

No-Precipitation Type: 410 

 From Fig. 5a, it can be observed that the first fifteen highest contributing predictors are 411 

all satellite-based, with accumulated contribution of more than 50% of the total contribution. 412 

It indicates the importance of satellite observations in separating Rain and No-Rain areas. The 413 

most important predictor is the D-BTD (T7.3 – T11.2) - (T8.5 – T12.3), which displays 414 

significantly different values  with No-Precipitation than with precipitating types  (Fig. 5b). 415 

Among other predictors, D-BTDs and textures of D-BTDs show higher contributions (Fig. 5a). 416 

Within D-BTDs predictors, one can notice the frequent combination of WV – IR and IR – IR 417 

channels. From Fig. 8k, D-BTDs involving WV – IR and WV – IR combinations display lesser 418 

separation of No-Precipitation from other types.  419 

 420 

Hail Type: 421 

Figure 6a indicates that  the highest contributing predictors for the identification of Hail 422 

include both environmental and satellite predictors, and that their combined contributions add 423 
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up to  more than 60% of the total. Hail is generally associated with a high lapse rate (Fig. 7l), 424 

relatively warmer temperature near the surface (Fig. 7c), lower relative humidity at 500 hPa 425 

(Fig. 7f), and higher surface CAPE compared to other precipitation types (Fig. 7k).  In earlier 426 

studies, RH and / or PW are used as predictors to provide information about low-level 427 

environmental conditions (Ba and Gruber, 2001; Vicente et al., 1998; Kuligowski et al., 2016),  428 

but the present analysis  highlights the significance of other environmental parameters. 429 

However, it should be noted that there is a significant overlap in the values of the environmental 430 

predictors with the No-Precipitation type, which explains why that type has much greater 431 

reliance on satellite data than do the others. 432 

 Regarding satellite based-predictors, again D-BTDs generally make the greatest 433 

contributions. There is a noticeable structure  in these D-BTDs; i.e., they largely consist of 434 

differences between two WV channels and/or the difference between one WV channel and the 435 

“dirty” IR channel T8.5, which is also sensitive to WV content. D-BTDs generally show 436 

smaller departures from 0 with Hail compared to other precipitation types (Fig.8i, j, k). In terms 437 

of textures, Contrast and Entropy tend to display higher values compared to other types (Fig.8b, 438 

c), and, regarding  BTs, the Hail type is consistently associated with the coldest cloud-top 439 

temperatures (Fig. 8a, d, e).  440 

 From the distribution analysis (Fig. 7, 8), it can be observed that Hail characteristics 441 

have significant overlap with those associated with Convective precipitation types, which 442 

explains why Hail is often incorrectly classified as one of the Convective types (Table 4).  443 

 444 

Convective Type: 445 

From Figure 6b, Zenith Angle is the only satellite predictor in the fifteen highest 446 

contributing predictors, which cumulatively contributes to slightly more than 50% of the 447 

overall estimated probability. The remaining contribution is mainly from satellite predictors. 448 
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As it is observed, Hail, Lapse Rate, surface-based CAPE, Relative Humidity, and surface 449 

potential temperature show higher importance (Fig. 6b). Boxplots of both environmental and 450 

satellite predictors (Fig. 7 and 8, respectively) display significant overlap with other 451 

precipitation types except Cool Stratiform and No-Precipitation. It explains the lower accuracy 452 

obtained with the Convective precipitation type and the misclassification with Hail, Tropical 453 

Convective/Mix and Warm Stratiform (Table 4).   454 

 In terms of satellite predictors, D-BTDs display higher differences (Figs. 8i, j, k) 455 

between Convective types and  Stratiform types . Similarly, different signatures are observed 456 

for the T6.2 Textures predictors (Figs. 8b, c); e.g. higher entropy and contrast with convective 457 

than with stratiform types. Overall, separating Convective types from other precipitation types 458 

is challenging.  459 

 460 

Tropical Convective/Mix (TCM): 461 

 Like the Convective type, TCM displays most contributions (~80% total) from 462 

environmental predictors (Fig. 6c). The only  satellite contributor is Zenith angle with the third 463 

highest contribution (>5%). It is also interesting to observe that the 850-500 hPa lapse rate 464 

contributes more than 10% in all three convective types, and it is one of the top contributing 465 

predictors in separating convective types from stratiform types. TCM is associated with higher 466 

precipitable water (Fig.7i) and Wet Bulb Temperature (WBT; Fig.7g). Both TCM and Tropical 467 

Stratiform/Mix have similar model predictors taking higher values; e.g., the 500hPa 468 

temperature (Fig.7a) and Relative Humidity profiles (Fig.7e, f). This explains the 469 

misclassification between both tropical classes (Table 4).  470 

 Regarding satellite predictors (Fig. 8), Zenith angle may indirectly capture the preferred 471 

location of occurring tropical precipitation types in the southeastern CONUS. From Fig. 8, 472 

there is overlap between TCM and Tropical Stratiform/Mix (TSM), while TCM has similar 473 
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characteristics to the Convective type. These similarities in their respective predictor values 474 

make it challenging to separate these two types (Table 4).  475 

 476 

Tropical Stratiform/Mix (TSM): 477 

 From Figure 6f and  similar to TCM (Fig.6c),  environmental predictors and Zenith 478 

Angle contribute around 60% of the total information content for identifying TSM.  Notably, 479 

in stratiform types, predictors related to atmospheric moisture content such as relative humidity 480 

and precipitable water have higher contributions, while for convective types, the 850-500 hPa 481 

lapse-rate and CAPE consistently show higher contributions. Stratiform types show lower 482 

lapse rates than convective types in general (Fig. 7l). As reported in the TCM discussion, RH 483 

and PW are both high for the tropical classes (Fig. 7i, e, f).  484 

 In terms of  satellite predictors (Fig. 8), BTs  are generally highest for No-Precipitation, 485 

lower for Stratiform types (with Tropical Stratiform/Mix being colder than Warm Stratiform), 486 

and lower yet with Convective types where the coldest cloud tops are found with Hail (Fig 487 

8a,d), which is perfectly consistent with their acting as a rough proxy for cloud-top 488 

temperature. The distribution of the values of BTs and other indices indicate that TSM 489 

characteristics range between TCM and Warm Stratiform, which in turn explains why TSM is 490 

often misclassified as one of these other two classes.  491 

 492 

Warm Stratiform: 493 

 For Warm Stratiform (Fig. 6e), the highest contributing predictors are PW, humidity 494 

and other temperature-based environmental predictors, along with satellite zenith angle. The 495 

height of the 0°C isotherm is lower than for the other precipitation types. The distribution of 496 

values of RH, PW, and WBT are slightly lower than for the Convective types and TSM (Fig 497 
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7i, g), but with a large degree of overlap. This explains the mis-classification of Warm 498 

Stratiform as Convective types or TSM.  499 

  The satellite predictors exhibit a shift in BT signatures and other predictors (Fig. 8), 500 

from No-Precipitation to Stratiform to Convective types, but with considerable overlap. This 501 

again highlights the need to identify precipitation types probabilistically rather than 502 

deterministically. 503 

 504 

Cool Stratiform: 505 

  For the Cool Stratiform type, almost 90% of the information content comes from the 506 

first fifteen predictors (Fig. 6d). Most of these predictors are temperature-based as expected, 507 

with the highest contribution coming from WBT which is also used in MRMS to separate Cool 508 

Stratiform from other precipitation types. The environmental temperature values are generally 509 

lower for Cool Stratiform than any other precipitation types (Fig. 7). Consistently, the same 510 

trend is observed for the height of the 0°C isotherm (Fig. 7j) and the 850-500hPa lapse rate. 511 

Other environmental predictors, such as RH, do not separate Cool Stratiform well from other 512 

precipitation types.  513 

 While the low-level environment is colder with Cool Stratiform than other precipitation 514 

types, Fig. 8 shows that ABI cloud top temperatures are warmer than Warm Stratiform (Fig. 515 

8a, d, e) with some overlap.  516 

 517 

4.5. Why incorrect estimates? 518 

 The causes of misclassification can be explained well for most precipitation types by 519 

the overlap of  predictor distributions across different precipitation types (section 4.4; Figs. 7 520 

and 8). However, the reason for overestimating the rain area (5% of No-Precipitation is 521 

misclassified as Warm Stratiform, as shown in Table 4), is not explained by the analysis thus 522 
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far since it is observed that No-Precipitation is well separated from other classes for several 523 

predictors.  The overestimation of rain area is further analyzed by plotting the distributions of 524 

the important predictors for the No-Precipitation type for both training and testing dataset 525 

separately, and by highlighting in which class they are (mis)classified. Figure 9 shows a 526 

representative example with the D-BTD predictor (T7.3 – T11.2) - (T8.5 – T12.3) which is the 527 

highest contributing predictor for No-Precipitation (see Fig. 5b). 528 

As expected, the misclassified No-Precipitation samples are associated with different 529 

distributions of the predictor than the training No-Precipitation samples, in particular Warm 530 

Stratiform, which explains the large misclassification of No-Precipitation in this type. In Part 531 

I, the misclassified No-Precipitation samples are observed to generally occur along the edges 532 

of rainy areas with low RF estimated probabilities. From Figure 9, the characteristics of such 533 

misclassified samples are closer to the distributions of other precipitation types, which  explains 534 

why the RF models tend to misclassify such samples. This is attributed to the sub-pixel rainfall 535 

variability and possible surface contribution along the edges of rainy areas associated with the 536 

satellite sampling resolution (i.e. non uniform beam filling (NUBF) as reported in Kirstetter et 537 

al., 2012, 2013 and Upadhyaya et al., 2020). Other sources of uncertainty can arise from the 538 

spatio-temporal matching between ABI and GV-MRMS, and possibly from internal MRMS 539 

procedures to avoid virga (Zhang et al., 2016). We also observe a similar behaviour with other 540 

precipitation type misclassifications (Figure S2).  541 

 542 

5. Conclusions 543 

The specific objective of this study is to understand the relationship between satellite and NWP 544 

environmental predictors and MRMS-classified precipitation types and processes through 545 

interpreting the developed ML based classification model. For the first time to our knowledge, 546 

a consistent and systematic analysis is performed on GEO satellite-based indices for 547 
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precipitation detection and classification of types. The motivating research questions and major 548 

conclusions are indicated below:  549 

Analysis 1: What is the impact of different categories of satellite predictors on classification 550 

accuracy?   551 

● An improvement in the range of 5-20% is observed, with highest accuracy 552 

improvement for Warm Stratiform when compared to models developed with only 553 

Brightness Temperatures of 5 channels. Specifically, texture-based predictors 554 

significantly improve the classification accuracy.  555 

Analysis 2: What is the relative impact of satellite-based predictors and environmental 556 

predictors? 557 

● Except for Hail and No-Precipitation, the detection scores improve in the range of 10-558 

20% by adding environmental predictors along with satellite predictors.  Hail and No-559 

Precipitation types achieve maximum accuracy with satellite predictors. 560 

Analysis 3: How does  the new generation of GEO sensors compare to historical benchmarks 561 

with legacy channels? 562 

● Classification accuracy improves for all precipitation types by adding the WV channel 563 

T6.2 to the IR T11.2 channel, with a gain of around 5% for No-Precipitation and 564 

Convective types, and more than 10% with all other precipitation types. 565 

●      The highest accuracy with satellite predictors is obtained with all five channels used 566 

in this study, suggesting the need to test additional channels.  567 

Analysis 4: Which predictors are contributing to different precipitation types?  568 

● In terms of satellite predictors, BTs are empirically confirmed to be consistent with the 569 

physical understanding of BTs as a proxy for cloud-top temperatures: they display the 570 

warmest values for No-Precipitation, lower values for Stratiform types (with Tropical 571 
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Stratiform/Mix being colder than Warm Stratiform), and a further drop with Convective 572 

types, where the coldest cloud tops are found with Hail. 573 

● Satellite observations are important in separating Rain and No-Rain areas. Of particular 574 

importance for precipitation detection are the D-BTDs predictors containing 575 

combinations of WV – IR and IR – IR channels. 576 

● In stratiform types, predictors related to atmospheric moisture content such as relative 577 

humidity and precipitable water have the highest contribution, while for convective 578 

types, predictors 850-500 hPa lapse-rate and CAPE consistently showed the highest 579 

contribution.  580 

Recommendations from the study are:  581 

1. It is advantageous to derive predictors from the satellite brightness temperatures (e.g., 582 

texture, inter-band differences)  instead of only using single-pixel, single-channel 583 

values. 584 

2. Environmental predictors from NWP, such as CAPE, lapse rate, relative humidity, and 585 

precipitable water, bring complementary information and are therefore recommended 586 

to be included in retrieval algorithms  587 

3. When possible, it is recommended to include the heritage channel T6.2 in operational 588 

precipitation retrieval algorithms and for precipitation reanalyses. 589 

The conclusions and recommendations from this study will ultimately aid towards improved 590 

precipitation characterization and retrievals from space. In future work, more channels will be 591 

considered, as well as similar satellite platforms such as Himawari, Geostationary - Korea 592 

Multi-Purpose Satellite (GEO-KOMPSAT), Indian National Satellite (INSAT), Meteosat and 593 

FengYun (FY) series.    594 
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List of Tables: 721 

Table 1: Categories and example of predictors used in study  722 

 
Categor

y 
Predictor Type Example 

 1 BT (Brightness Temperature) T7.3 

 2 
BTD (Brightness Temperature 

Difference) 
T8.5 – T11.2 

 3 D-BTD (Difference of BTDs) 
(T6.2* – T7.3) –  (T8.5 – 

T11.2) 

 4 Te (GLCM Textures) T11.2 mean 

 5 Ze (Zenith Angle) Ze 

 6 Environmental Predictors (NWP) Details in Table 3 

*T6.2 is read as brightness temperature of ABI channel 6.2μm  723 
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Table 2. Quality controlled sample size across MRMS-GV different precipitation types  724 

 Convec Cool_Strat  Hail NoPrecip Trp_ConvMix  Trp_StratMix  WarmStart 

           Total      114,749 131,539 40,774 4,118,832 67,866 883,276 14,723,928 

Train (70%) 87,919 98,677 31,612 2,966,493 51,842 651,764 10,694,772 

Test (30%) 26,830 32,862 9,162 1,152,339 16,024 231,512 4,029,156 

Balanced training Sample sized 

Balanced Train 31,612 31,612 31,612 31,612 31,612 31,612 31,612 

  725 
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Table 3: Environmental predictors derived from RAP Model 726 

Sl No Environmental Variable 

1 Vertically integrated precipitable water (kg/m2) 

2 1000-700-hPa mean relative humidity (%) 

3–6 Relative humidity (%) at 900-hPa, 850-hPa, 700-hPa and 500-hPa 

7 Surface equivalent potential temperature (K) 

8 Surface-based convective available potential energy (CAPE) (J/kg) 

9 Surface temperature (C) 

10–12 Temperature (K) at 850-hPa, 700-hPa and 500-hPa 

13 Height of 0C isotherm (km) 

14 – 16 Wind shear (m/s) from surface to 850 hPa,  700 hPa and 500 hPa  

17– 18 Lapse rate (K/km) at 850-500-hPa and 850-700-hPa 

19 Wet Bulb Temperature 

* Note: The bold rows are predictors derived from other RAP output fields and other predictors are directly 727 
available from RAP output. 728 
  729 
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Table 4. Normalized Contingency Matrix (in %), overall classification accuracy and Kappa 730 

coefficient. Blue highlighted cells are class accuracy statistics (Probability of Detection). 731 

    RF: Predicted classes   Overall 

Accuracy     Convec Cool_Strat Hail NoPrecip Trp_ConvMix Trp_StratMix WarmStart Total 

MRMS: 

Precip 

Types 

Convec 47 0 14 1 11 9 19 100 

75.90 

Cool_Strat 0 97 0 0 0 0 3 100 

Hail 26 0 70 0 2 0 1 100 

NoPrecip 0 0 1 93 0 0 5 100 

Trp_ConvMix 10 0 6 0 55 26 3 100 

Trp_StratMix 4 0 0 0 12 64 20 100 

WarmStart 10 1 2 2 2 11 72 100 
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Table 5. List of experiments/analysis and their objectives 733 

Analysis Objective 

1 Understand the significance of different categories of satellite predictors 

2 
Accuracy assessment of classifier with satellite only, environmental predictors only and overall 

predictors  

3 
Benchmarking accuracy that can be achieved with historical GEO sensors operating with one or 

two channels compared to the new generation of satellite sensors 

4 Feature/Predictor importance for each precipitation type individually 
5 Why incorrect estimates?  

  734 
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List of Figures: 735 

 736 

Figure 1. Treeinterpreter output for a hypothetical sample with Threshold (Th), Brightness 737 

Temperature (BT), Wet Bulb Temperature (WBT), and Relative Humidity (RH). Red lines 738 

indicate the decision path taken by the algorithm for the sample under consideration. Each 739 

grey box indicates the decision function at each node and “Th” represents the decision 740 

threshold determined during the training phase. The boxes with numbers located at the 741 

bottom of each grey box represent the contribution from each node to the final estimated 742 

probability.  743 



 

37 

 744 

Figure 2. Classification accuracy for each precipitation type obtained with RF models 745 

developed with separate categories of satellite predictors: Brightness Temperatures (BT), 746 

Brightness Temperature Difference (BTD), Difference of BTD (D-BTD), Texture (Te), and 747 

Zenith Angle (Ze).   748 
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 749 

Figure 3. Classification accuracy for each precipitation type from satellite predictors, 750 

environmental  predictors, and both.  751 
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 752 

Figure 4. Classification accuracy for each precipitation type obtained with RF models 753 

developed with one channel (11.2 μm), two (11.2 and 6.2 μm), three (11.2, 6.2, 12.3 μm), and 754 

all five channel satellite predictors.  755 



 

40 

 756 

Figure 5. Examples of most important predictors identification: (a) Box plots of 757 

contributions to the identification of the No-Precipitation type for the first fifteen predictors, 758 

along with cumulative mean contribution (dashed line); (b) Distributions of predictor values 759 

(D-BTD=(T7.3-T11.2) - (T8.5-T12.3) ) and mean (red dots) to the identification of different 760 

precipitation types.   761 
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 762 

Figure 6. Same as Figure 5a but for all other precipitation types.  763 
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 764 

Figure 7. Distributions of the most significant environmental predictors across different 765 

precipitation types  766 
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 767 

Figure 8. Distribution of the most significant satellite predictors across different precipitation 768 

types  769 
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 770 

Figure 9. Same as Figure 5b, and for No-Precipitation type distributions separated for both 771 

training and testing data across RF predicted precipitation types. The smaller boxes on the 772 

left are MRMS-classified No-Precipitation testing data separated according to RF estimated 773 

precipitation types. The distributions associated with other MRMS-classified precipitation 774 

types are also given for comparison purposes. 775 
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